summaryrefslogtreecommitdiffstats
path: root/matrix.hpp
blob: ada303bacdd17f68658f6ac4afce2a5db48989e7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#ifndef MATRIX_HPP
#define MATRIX_HPP 1

#include <array>
#include <algorithm>
#include <span>
#include <ostream>

template<typename T, std::size_t M, std::size_t N>
    requires(std::is_arithmetic_v<T>)
class matrix
{
protected:
    std::array<T, N * M> v;
public:
    constexpr matrix(const std::array<std::array<T, N>, M> &vs)
    {
        for(std::size_t m = 0; m < M; m++)
        for(std::size_t n = 0; n < N; n++) {
            v[(m * N) + n] = vs[m][n];
        }
    }
    constexpr matrix(const std::array<T, M * N> &vs) :
        v(vs)
    {}

    constexpr matrix(T a) {
        v.fill(a);
    }

    constexpr matrix &operator+=(const matrix &rhs)
    {
        for(std::size_t i = 0; i < M * N; i++)
            v[i] += rhs.v[i];
        return v;
    }

    constexpr friend matrix operator+(
            matrix lhs, 
            const matrix &rhs)
    {
        lhs += rhs;
        return lhs;
    }

    constexpr friend matrix operator-(matrix lhs)
    {
        for(std::size_t i = 0; i < M * N; i++)
            lhs.v[i] = -lhs.v[i];
        return lhs;
    }

    constexpr matrix &operator-=(const matrix &rhs)
    {
        for(std::size_t i = 0; i < M * N; i++)
            v[i] -= rhs.v[i];
        return *this;
    }

    constexpr friend matrix operator-(
            matrix lhs,
            const matrix &rhs)
    {
        lhs -= rhs;
        return lhs;
    }

    template<std::size_t P>
    constexpr friend matrix<T, M, P> operator*(
            const matrix<T, M, N> &rhs,
            const matrix<T, N, P> &lhs)
    {
        matrix<T, M, P> ret(0);
        for(std::size_t p = 0; p < P; p++) {
            for(std::size_t m = 0; m < M; m++) {
                for(std::size_t n = 0; n < N; n++) {
                    ret.at(m, p) += rhs.at(m, n) * lhs.at(n, p);
                }
            }
        }
        return ret;
    }

    constexpr matrix &operator*=(const T &rhs)
    {
        std::ranges::transform(
                v.begin(), 
                v.end(), 
                v.begin(), 
                [rhs](T t) -> T { return t * rhs; }
            );
        return *this;
    }

    constexpr friend matrix operator*(
            matrix lhs,
            const T &rhs)
    {
        lhs *= rhs;
        return lhs;
    }

    constexpr std::array<std::reference_wrapper<T>, N> row(std::size_t m)
    {
        std::array<std::reference_wrapper<T>, N> ret;
        for(std::size_t n = 0; n < N; n++) ret[n] = v[(m * N) + n];
        return ret;
    }

    constexpr std::array<std::reference_wrapper<T>, M> col(std::size_t n)
    {
        std::array<std::reference_wrapper<T>, M> ret;
        for(std::size_t m = 0; m < M; m++) ret[m] = v[(m * M) + n];
        return ret;
    }

    constexpr T &at(std::size_t m, std::size_t n)
    {
        return v.at((m * N) + n);
    }
    constexpr const T &at(std::size_t m, std::size_t n) const
    {
        return v.at((m * N) + n);
    }

    constexpr std::array<T, M * N> &data() noexcept { return v; }
    constexpr std::array<T, M * N> &data() const noexcept { return v; }

    constexpr friend std::ostream &operator<<(std::ostream &lhs, const matrix &rhs)
    {
        for(std::size_t m = 0; m < M; m++) {
            lhs << '\n';
            for(std::size_t n = 0; n < N; n++) {
                lhs << rhs.at(m, n) << ", ";
            }
        }
        return lhs;
    }
};

template<typename T, std::size_t S>
class sqmatrix final : public matrix<T, S, S>
{
    static constexpr sqmatrix identity()
    {
        sqmatrix ret(0);
        for(std::size_t i = 0; i < S; i++) {
            ret.at(i, i) = 1;
        }
        return ret;
    }

    constexpr sqmatrix operator*=(const sqmatrix &rhs)
    {
        sqmatrix copy(*this);
        for(std::size_t i = 0; i < S; i++) {
            for(std::size_t j = 0; j < S; j++) {
                T cell = 0;
                for(std::size_t k = 0; k < S; k++)
                    cell += copy.at(k, j) * rhs.at(i, k);
                this->at(i, j) = cell;
            }
        }
        return *this;
    }

    constexpr friend sqmatrix operator*(
            sqmatrix lhs,
            const sqmatrix &rhs)
    {
        lhs *= rhs;
        return lhs;
    }
};

template<typename T, std::size_t L>
class rowmatrix final : public matrix<T, L, 1>
{
    constexpr T &operator[](std::size_t i) const
    {
        return this->v[i];
    }
    constexpr T &operator[](std::size_t i)
    {
        return this->v[i];
    }
};

template<typename T, std::size_t L>
class colmatrix final : public matrix<T, 1, L>
{
    constexpr T &operator[](std::size_t i) const
    {
        return this->v[i];
    }
    constexpr T &operator[](std::size_t i)
    {
        return this->v[i];
    }
};

#endif