summaryrefslogtreecommitdiffstats
path: root/arch/x86_64/page.c
blob: d816f66452929d8701b7dc003dd757c1f42330f6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#include "arch/x86_64/page.h"
#include "klib/rbtree.h"
#include "arch/processor.h"
#include "string.h"
#include "jove.h"
#include "memory.h"
#include "print.h"

extern void *_kernel_end;

struct PageDirectoryListEntry {
    struct PageDirectoryListEntry *next;
    page_directory_t pd;
};

struct PageStateCache {
    page_directory_t *pd;
    size_t pmli[4];
    pmle_t *pml[4];
} s_state_cache;

const uintptr_t USERLAND_MEMORY_BASE = KiB;
const uintptr_t USERLAND_MEMORY_LIMIT = 0x00007FFFFFFFFFFFULL;

const uintptr_t PHYSMAP_MEMORY_BASE = 0xFFFF800000000000ULL;
const uintptr_t PHYSMAP_MEMORY_LIMIT = PHYSMAP_MEMORY_BASE + (1 * GiB);

const uintptr_t KERNEL_MEMORY_BASE = 0xFFFF800000000000ULL;
const uintptr_t KERNEL_MEMORY_LIMIT = 0xFFFFFFFFFFFFFFFFULL;

static size_t
s_paging_pmli(size_t l, uintptr_t addr)
{
    size_t shift = (PAGE_SHIFT + (9 * l));
    return (addr & (0x1FFULL << shift)) >> shift;
}

static pmle_t*
s_paging_fetch_table(pmle_t *pml, size_t l, uintptr_t virt)
{
    size_t pmli = s_paging_pmli(l, virt);
    if(s_state_cache.pmli[l] == pmli && s_state_cache.pml[l] != NULL)
        return s_state_cache.pml[l];

    pmle_t entry = pml[pmli];
    bool entry_new = false;
    if(!entry.p) {
        entry_new = true;
        entry.value = pm_alloc(1);
        entry.p = 1;
        entry.rw = 1;
        entry.us = 1;
        pml[pmli] = entry;
    }
    pmle_t *table = (pmle_t*)(pm_tovirt(entry.paddr << PAGE_SHIFT));
    if(entry_new) memset(table, 0, PAGE_SIZE);

    s_state_cache.pmli[l] = pmli;
    s_state_cache.pml[l] = table;
    return table;
}

static void
s_paging_cache_tables(page_directory_t *pd, uintptr_t virt)
{
    pmle_t *pml4 = pd->pml;
    if(s_state_cache.pd != pd) memset(&s_state_cache, 0, sizeof(s_state_cache));

    pmle_t *pml3 = s_paging_fetch_table(pml4, 3, virt);
    pmle_t *pml2 = s_paging_fetch_table(pml3, 2, virt);
    pmle_t *pml1 = s_paging_fetch_table(pml2, 1, virt);
}

static pmle_t*
s_paging_get_table(pmle_t *pt, size_t l, uintptr_t virt)
{
    if(pt == NULL) return NULL;
    size_t pmli = s_paging_pmli(l, virt);
    if(s_state_cache.pmli[l] == pmli && s_state_cache.pml[l] != NULL)
        return s_state_cache.pml[l];

    pmle_t entry = pt[pmli];
    if(!entry.p) return NULL;
    return (pmle_t*)(pm_tovirt(entry.paddr << PAGE_SHIFT));
}

page_mapping_t
vm_pd_mapping_get(page_directory_t *pd, uintptr_t addr)
{
    spinlock_acquire(pd->lock);
    page_mapping_t mapping = { 0 };
    
    pmle_t *pml4 = pd->pml;
    if(s_state_cache.pd != pd) memset(&s_state_cache, 0, sizeof(s_state_cache));

    pmle_t *pml3 = s_paging_get_table(pml4, 3, addr);
    pmle_t *pml2 = s_paging_get_table(pml3, 2, addr);
    pmle_t *pml1 = s_paging_get_table(pml2, 1, addr);
    if(pml1 == NULL) goto release_return;

    size_t pml1i = s_paging_pmli(0, addr);
    pmle_t pml1e = pml1[pml1i];

    mapping = (page_mapping_t) {
        .phys = (pml1e.paddr << PAGE_SHIFT) & ~PAGE_MASK,
        .pf = {
            .present = pml1e.p,
            .writeable = pml1e.rw,
            .useraccess = pml1e.us,
            .executable = !pml1e.xd
        }
    };
release_return:
    spinlock_release(pd->lock);
    return mapping;
}

page_mapping_t vm_mapping_get(uintptr_t addr)
{ return vm_pd_mapping_get(pd_current(), addr); }

void
mem_set_mapping_as(page_directory_t *pd, page_mapping_t mapping, uintptr_t virt)
{
    spinlock_acquire(pd->lock);
    s_paging_cache_tables(pd, virt);
    pmle_t *pml1 = s_state_cache.pml[0];
    size_t pml1i = s_paging_pmli(0, virt);

    pml1[pml1i] = (pmle_t) {
        .p = mapping.pf.present,
        .rw = mapping.pf.writeable,
        .us = mapping.pf.useraccess,
        .xd = !mapping.pf.executable,
        .paddr = mapping.phys >> PAGE_SHIFT
    };
    spinlock_release(pd->lock);
}

void mem_set_mapping(page_mapping_t mapping, uintptr_t virt)
{ mem_set_mapping_as(pd_current(), mapping, virt); }

void
vm_pd_ensure(page_directory_t *pd, uintptr_t from, uintptr_t to, page_flags_t flg)
{
    spinlock_acquire(pd->lock);
    from &= ~(PAGE_SIZE - 1);
    to += (to % PAGE_SIZE > 0 ? (PAGE_SIZE - (to % PAGE_SIZE)) : 0);

    if(to < from) to = from;
    size_t pages = (to - from) >> PAGE_SHIFT;
    if(pages == 0) pages = 1;
    for(size_t i = 0; i < pages; i++) {
        uintptr_t waddr = from + (i << PAGE_SHIFT);
        s_paging_cache_tables(pd, waddr);
        pmle_t *pml1 = s_state_cache.pml[1];
        size_t pml1i = s_paging_pmli(0, waddr);

        if(!pml1[pml1i].p) {
            physptr_t phys = pm_alloc(1);
            pml1[pml1i] = (pmle_t) {
                .p = flg.present,
                .rw = flg.writeable,
                .us = flg.useraccess,
                .xd = !flg.executable,
                .paddr = phys >> PAGE_SHIFT
            };
        }
    }
    spinlock_release(pd->lock);
}

void vm_ensure(uintptr_t from, uintptr_t to, page_flags_t flg)
{ vm_pd_ensure(pd_current(), from, to, flg); }