#ifndef VEX_H
#define VEX_H 1
#include <array>
#include <cmath>
#include <cstddef>
#include <ostream>
#include <concepts>
namespace vex
{
template<typename T>
concept arithmetic = std::is_arithmetic<T>::value;
template<arithmetic T, unsigned D>
requires (D > 1)
struct vec_dimd
{
std::array<T, D> v;
explicit vec_dimd() = default;
template<typename ...Args>
explicit vec_dimd(Args&&... args) : v{args...} {}
explicit vec_dimd(T args[D]) : v(args) {}
explicit vec_dimd(T fill) { v.fill(fill); }
T operator[](std::size_t i) { return v[i]; }
T operator[](std::size_t i) const { return v[i]; }
vec_dimd<T, D> operator+=(const vec_dimd<T, D> &rhs) { for(size_t i = 0; i < D; i++) v[i] += rhs.v[i]; return *this; }
vec_dimd<T, D> operator-=(const vec_dimd<T, D> &rhs) { for(size_t i = 0; i < D; i++) v[i] -= rhs.v[i]; return *this; }
vec_dimd<T, D> operator*=(const vec_dimd<T, D> &rhs) { for(size_t i = 0; i < D; i++) v[i] *= rhs.v[i]; return *this; }
vec_dimd<T, D> operator/=(const vec_dimd<T, D> &rhs) { for(size_t i = 0; i < D; i++) v[i] /= rhs.v[i]; return *this; }
vec_dimd<T, D> operator*=(const T &rhs) { for(size_t i = 0; i < D; i++) v[i] *= rhs; return *this; }
vec_dimd<T, D> operator/=(const T &rhs) { for(size_t i = 0; i < D; i++) v[i] /= rhs; return *this; }
vec_dimd<T, D> operator-() { return vec_dimd<T,D>(0) - *this; }
auto operator<=>(const vec_dimd<T,D> &rhs) const { return magnitude() <=> rhs.magnitude(); }
bool operator==(const vec_dimd<T,D> &rhs) const { for(unsigned i = 0; i < D; i++) if(v[i] != rhs.v[i]) return false; return true; }
friend vec_dimd<T, D> operator+(vec_dimd<T, D> lhs, const vec_dimd<T, D> &rhs) { lhs += rhs; return lhs; }
friend vec_dimd<T, D> operator-(vec_dimd<T, D> lhs, const vec_dimd<T, D> &rhs) { lhs -= rhs; return lhs; }
friend vec_dimd<T, D> operator*(vec_dimd<T, D> lhs, const vec_dimd<T, D> &rhs) { lhs *= rhs; return lhs; }
friend vec_dimd<T, D> operator/(vec_dimd<T, D> lhs, const vec_dimd<T, D> &rhs) { lhs /= rhs; return lhs; }
friend vec_dimd<T, D> operator*(vec_dimd<T, D> lhs, const T &rhs) { lhs *= rhs; return lhs; }
friend vec_dimd<T, D> operator/(vec_dimd<T, D> lhs, const T &rhs) { lhs /= rhs; return lhs; }
friend std::ostream &operator<<(std::ostream &os, const vec_dimd<T,D> obj) {
os << '{';
for(std::size_t i = 0; i < D; i++) os << obj.v[i] << ((i < (D - 1)) ? ',' : '}');
return os;
}
/*Finds the distance from the origin to the ray cast in D dimension space using components of vec*/
T sqrMagnitude() const { T t{}; for(size_t i = 0; i < D; i++) t += v[i] * v[i]; return t; }
T magnitude() const { return std::sqrt(sqrMagnitude()); }
/*Finds the dot product of itself and another vec of same T and D*/
T dot(const vec_dimd<T, D> &b) const { T t; for(size_t i = 0; i < D; i++) t += (v[i] * b.v[i]); return t; }
friend T dot(const vec_dimd<T,D> &lhs, const vec_dimd<T,D> &rhs) { return lhs.dot(rhs); }
vex::vec_dimd<T, D> normalize() const { return *this / magnitude(); }
vex::vec_dimd<T, D> abs() const { vex::vec_dimd<T, D> copy(*this); for(unsigned i = 0; i < D; i++) copy.v[i] = std::abs(copy.v[i]); return copy; }
auto cross(const vec_dimd<T,D> &o) const {
if constexpr(D == 2) return v[0]*o[0] - v[1]*o[1];
if constexpr(D == 3) return vec_dimd<T, D>{v[1]*o[2]-v[2]*o[1], v[2]*o[0]-v[0]*o[2],v[0]*o[1]-v[1]*o[0]};
}
};
template<arithmetic T>
using vec2 = vec_dimd<T, 2>;
template<arithmetic T>
using vec3 = vec_dimd<T, 3>;
/*(x, y) -> (r, theta)*/
template<arithmetic R, arithmetic P>
static vec2<R>
polar(const vec2<P> &in)
{
return vec2<R>(
std::sqrt(in[0] * in[0] + in[1] * in[1]),
std::atan2(in[1], in[0])
);
}
/*(r, theta) -> (x, y)*/
template<arithmetic R, arithmetic P>
static vec2<R>
cartesian(const vec2<P> &in)
{
return vec2<R>(
(R)(cos(in[1]) * in[0]),
(R)(sin(in[1]) * in[0])
);
}
};
#endif